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One of the biggest challenges in current biomedical research is trying to bridge the gap between the different

scales of organization that coexist in an organism, solving what is known as phenotype-genotype relationship.

Ultimately, this translates into finding the molecular basis of different biological functions or pathologies and

diseases. Identifying relationships between disease phenotypes and genetic alterations is essential to better un-

derstand disease etiology and to improve genome-based diagnostics. However, experimental methods designed

to find these associations can be expensive and time consuming. To address this challenge, we took advantage of

the vast amount of available biomedical data and integrated a multimodal complex network that could be used

to prioritize novel gene-disease associations.

In this work, we construct and analyze a multimodal biomedical knowledge graph that contains data about

gene-disease associations, complemented with protein-protein interactions, biological pathways , disease ontol-

ogy relationships and natural language descriptions of the involved diseases. This multimodal network integrates

quality resources such as DisGeNET [1], HIPPIE [2], PrimeKG [3], Reactome [4] and Signor [5] (table 1). The

integrated network consists of 5 types of nodes organized in two layers: a disease layer and a gene/protein layer.

The two layers are connected by gene-disease associations (fig. 1a). We found that 99% of nodes of our multi-

modal network were at less than three hops away from a node of the complementary layer.

We considered two disease ontologies in our network, MONDO [6] and UMLS[7], which we combined using

vocabulary mapping. The integration of knowledge embedded in disease ontologies is a challenging task, since

the definition of a unique disease is ambiguous and often inconsistent between databases. To address this issue,

we incorporated BERT-group nodes in our network, which are disease concept groups obtained using the Clini-

calBERT natural language processing model [3].

In order to probe the disease layer, we studied its mesoscale structure at two different resolutions considering

two community detection algorithms: Infomap and Louvain (fig 1b). In each case we characterized the detected

communities in terms of the homogeneity of their components considering two metrics. The first one was based

on shared gene associations between diseases whereas the second one considered the semantic similarity of dis-

ease nodes inferred from a TF-IDF analysis of their natural language descriptions. To that end we used a measure

of semantic specificity, Spec, based on the entropy of the TF-IDF distributions associated with descriptions of the

components of a community:

Spec j = 1−H j = 1+
N
∑

i=1

pi, j log pi, j (1)
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where N is the number of terms in the network corpus and pi, j is the TF-IDF value of the term i in the com-

munity j. We compared the semantic specificity of these communities with a randomly generated control sample

and found that the communities detected by both algorithms showed significant semantic specificity (fig 2).

We also studied the structural role of BERT-group nodes in the disease layer. Using set similarity metrics, we

compared disease communities with groups of nodes that belong to BERT-groups, and found that communities

tend to form around BERT nodes. To further understand the role of disease group nodes, we characterized them

in terms of their participation coefficient and within-module degree [8]. We saw that BERT-groups tend to have

a connective role within their communities and a non-zero participation coefficient, which indicates that they act

as module connectors.

Overall, we were able to build a bio-medical network integrating more than 10000 diseases and 84000 high

confidence gene-disease associations with protein-protein interaction and biological pathway information. In

particular we analyzed different features of the disease layer and found that the observed connectivity patterns

could provide a meaningful scaffold to implement message passing algorithms for link prediction and prioritiza-

tion tasks.
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(a) Multimodal network diagram (b) Disease layer

Figure 1: (a) Diagram of the integrated multimodal network: The network is organized in two layers: a dis-

ease layer and a gene/protein layer. The disease layer contains disease nodes and BERT-group nodes. The

gene/protein layer contains gene/protein, pathways and protein complex nodes.(b) Disease layer: Colors in-

dicate communities detected with the Louvain algorithm. Wordcloud examples show the most relevant terms

associated with a community, which were extracted from the descriptions of the diseases that belong to that

community using a TF-IDF approach.

Node Type Number Source Edge Type Number Source

Disease 15766 DisGeNET Gene-Disease Association 84038 DisGeNET

BERT-Group 1067 PrimeKG Disease-Disease 17488 PrimeKG-MONDO

Gene/Protein 17363 DisGeNET-HIPPIE Protein-Protein Interaction 110062 HIPPIE

Complex 422 Signor Pathway-Protein 42646 Reactome

Pathway 2020 Reactome Protein-forms-Complex 1888 Signor

Total 36638 Total 256122

Table 1: Number of nodes and edges in the network, node/edge type and source database for each type.
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Figure 2: Semantic specificity of communities in the disease layer. Blue markers show the mean specificity

of groups of communities of the same size. We compared this metric with a randomly generated sample of

communities, shown in red. We found that the communities detected by both algorithms showed significant

semantic specificity
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